7644

L))

Check for
updates

The Utilization Fallacy and the Real Drivers of Carbon-Efficient Inference

Serving

PRASOON SINHA, The University of Texas at Austin

DIMITRIOS LIAKOPOULQS, The University of Texas at Austin

RUIHAO LI, The University of Texas at Austin

NEERAJA J. YADWADKAR, The University of Texas at Austin

Cloud providers deploy massive fleets of GPUs to meet the growing demand
for machine learning inference, but these fleets come with a steep carbon
cost—manufacturing 350,000 NVIDIA A100 GPUs emits an estimated 7.54
million kgCO2. Prior efforts have largely focused on increasing GPU uti-
lization, under the assumption that higher utilization translates to better
carbon efficiency. However, we find the notion that higher GPU utilization
makes inference serving systems inherently carbon efficient to be a fallacy.
Through our characterization study, focusing on the carbon efficiency of
GPU spatial sharing, we find that optimizing for resource utilization does
not always achieve carbon efficiency; the outcome depends on the specific
models co-located on a GPU. This tradeoff between utilization and carbon
efficiency is shaped by multiple drivers, including fluctuations in the under-
lying energy sources, request rates, and model input/output requirements.
Thus, improving the sustainability of inference serving demands a shift
from utilization-focused designs to carbon-aware GPU sharing and runtime
policies. To realize our vision, we (1) introduce an efficient and accurate
preliminary methodology to estimate GPU power consumption under con-
current model execution, and (2) show that frequency tuning in shared GPUs
can be used as a lever to improve carbon efficiency, but must be tailored to
the combination of models sharing a GPU and key carbon-efficiency drivers,
brought up by our characterization study. We conclude by proposing new
avenues for research as next steps and a call to action for the hardware
community to improve the long-term sustainability of ML inference serving,.

CCS Concepts: « Computer systems organization — Cloud computing;
« Hardware — Power estimation and optimization; Impact on the
environment; « Computing methodologies — Machine learning; «
Software and its engineering — Cloud computing.

Additional Key Words and Phrases: GPU Sharing, Sustainability

1 INTRODUCTION

The pursuit to support the ever-growing machine learning (ML) in-
ference workloads has pushed cloud providers to procure and build
large infrastructure fleets [6-8, 39]. Studies suggest that such infras-
tructure has severe carbon costs: manufacturing 350,000 NVIDIA
A100s as announced by Meta [39] emits at least 7.54 million kgCO2
(21.56 kgCO2 per GPU) [22]. Prior efforts to improve the sustain-
ability of inference serving have largely focused on increasing GPU
utilization (§ 2), under the assumption that higher utilization trans-
lates to better carbon efficiency. In this paper, we question whether
this assumption always holds true.

We conduct an extensive characterization study (§ 3) to answer
two fundamental questions: (

Authors’ Contact Information: Prasoon Sinha, prasoon.sinha@utexas.edu The Univer-
sity of Texas at Austin; Dimitrios Liakopoulos, dimliak@utexas.edu The University of
Texas at Austin; Ruihao Li, liruihao@utexas.edu The University of Texas at Austin;
Neeraja J. Yadwadkar, neeraja@austin.utexas.edu The University of Texas at Austin.

ACM SIGENERGY Energy Informatics Review

N s‘wlo& ,S\u‘mh S MSer

W eAXCa VINEINC-chainy (e Wards om e)il cafear STV)

Zf\a PAtle d\ V\MA\«M e

l h-fb“‘w{ mahe Ho m"‘f"""s
l/ &Pl soucsuer it

uﬂrinpi

= [No Sharing o
é 4618 I Spatial Sharing £ 300

o]
0 0

Compute Mem Mem Band

Oper. Embodied

Fig. 1. SDXL (image generation) and Whisper (speech-to-text) serving
inference requests on one A100 GPU via NVIDIA’s MIG GPU sharing
mechanism (spatial sharing) versus dedicating a GPU per model (no
sharing). Improving GPU utilization via spatial sharing does not always
improve carbon efficiency.

rough this characterization, we find that optimizing GPU uti-
lization does not always improve carbon efficiency (Fig. 1), rendering
this commonly held assumption a fallacy; the outcome depends on
the combination of models co-located on the GPUs. Maximizing
GPU utilization for some combinations achieves a significant reduc-
tion in both operational (up to 40%) and embodied emissions (up
to 62%). For other model combinations, maximizing utilization can
degrade carbon efficiency, mainly because the increase in latency
results in increased operational emissions. We find that this trade-
off between utilization and carbon efficiency is shaped by multiple
factors or carbon-efficiency drivers, including fluctuations in the
underlying energy sources, request rates, and model input/output
requirements.

Based on these observations, we argue that improving the sustain-
ability of inference servin ands a shift from utilization-focused
designs d runtime policies. We envi-
sion a carbon-aware inference serving system that bases its resource
management decisions on the key drivers we find and develops tar-
geted policies to improve carbon efficiency. To realize our visio
we (1) introduce an efficient and accurate preliminad

the amount

servin
GPUs but must

carbon-efficiency drivers, brought up by our characterization study.
Estimating GPU power under concurrent model execution.
Accounting for the key carbon-efficiency drivers requires under-
standing how they impact the carbon emissions for a specific set
of models. Operational and embodied emissions depend on infer-
ence latency; operational emissions also depend on energy and thus
the GPU power draw [22]. Hence, to design new carbon-centric
policies, we must understand how the concurrent execution of a
specific set of models impacts GPU power draw and inference la-
tency. Previous works have studied the impact of spatial sharing on

Volume 5 Issue 2, July 2025

s Ueodet, Fa\,od

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3757892.3757903&domain=pdf&date_stamp=2025-08-06

K.
»

e Qoo
Wghad St e

Cova/xe
oy

e ”‘“'!
ot ﬂ."')’ \
latency [11, 15, 23, 33, 60], but to the be‘!ﬂf’our Elowledge, none
have studied how sharing GPUs impacts power draw. While we
could use fine-grained power models proposed by the architecture
community [29, 31], applying them to shared GPU environments
requires expensive profiling to collect hardware counters for every
feasible combination of models that might share a GPU. This is pro-
hibitive because of (1) the rapid pace at which the ML community
generates new models, and (2) the combinatorially large space of
potential model combinations. Hence, we propose a preliminary
methodology that uses analytical models and high-level job profiles
to efficiently and accurately estimate the amount of power drawn by

a GPU when concurrently serving models. With <2 minutes of offline
profiling, our preliminary results show that we can estimate a GPU’s

WW when concurrently serving a set of models with just

Frequency tuning for shared GPUs. We then explore the poten-
tial of frequency tuning as a lever to further reduce carbon emissions
in shared GPU settings. Frequency tuning is a popular mechanism
to reduce GPU energy consumption [28, 44, 51-53, 59, 69, 73], how-
ever, it has only been explored assuming a single task executes on
the GPU. As tuning the frequency of shared GPUs inflates latency,
carbon emissions and violations of Service Level Objectives (SLOs)
may increase. However, we find that by tuning the frequency of
shared GPUs to the specific set of co-located models and dynamic
behavior of the key carbon-efficiency drivers, we can improve car-
bon efficiency by up to 1.43x while still meeting the latency SLOs of
inference serving workloads. Thus, developing new resource man-

agement policies that intelligently coordinamand
n is essential for improving t efficiency of
nference serving workloads. C./

In this paper, we make the following contributions:

o By studying the relationship between resource utilization and
carbon efficiency, we uncover the utilization fallacy — the flawed
assumption that maximizing GPU utilization inherently leads
to carbon-efficient resource management decisions.

e We study the impact of various aspects of inference workloads,
including load, energy source, and model input/output require-
ments, to uncover the real drivers of its carbon efficiency.

e We propose a preliminary methodology to efficiently yet ac-
curately estimate GPU power consumption during concurrent
model serving.

o We find that tuning the frequency of shared GPUs to the set of
co-located models and key carbon-efficiency drivers can greatly
reduce carbon emissions.

o Finally, we outline promising future research avenues and call on
the hardware community to prioritize architecture innovations
that enhance the sustainability of ML inference serving.

2 BACKGROUND & RELATED WORK
2.1 GPU Sharing Mechanisms

GPU vendors offer hardware-supported concurrency mechanisms
to share GPUs. NVIDIA offers three process-level mechanisms: time
multiplexing (TM), multi process service (MPS), and multi-instance
GPU (MIG). TM shares a GPU by switching between processes in a

ACM SIGENERGéEnergy Informatics Review

“\l‘m\“ 00))3“‘-)5”
Y aud s (W0 ¢ Womory)

jo08k
o

(Gt o) ™

rdo °

round-robin fashion, giving each process exclusive access to com-
pute resources during its time quantum. MPS spatially shares the
GPU to concurrently execute kernels from multiple processes at
once [43], however, it only isolates the compute units between pro-
cesses; the memory subsystem (L2 cache, HBM memory) is shared.
To enable interference-free spatial sharing, modern NVIDIA GPUs
offer MIG, which isolates compute and memory resources by expos-

“ﬁg indepenglent GPU slices on a single physical GPU [40].

ey AdiM be ing e ¥todo

We describe related work in GPU sharing, frequency scaling, and

GPU power modeling. To our knowledge, we are the first to study 3"‘\

(1) the implications of spatially sharing GPUs on the carbon emis
sions of inference serving workloads, (2) the efficacy in tuning the
frequency of shared GPUs to reduce carbon emissions, and (3) how
to efficiently estimate GPU power under concurrent execution.
GPU sharing. Several works use NVIDIA’s concurrency mecha-
nisms. Those using TM [13, 21, 25, 44, 49, 56, 64, 66, 67, 70] face
poor utilization as only a single task that cannot fully utilize the
GPU executes at once (Fig. 1, left plot red bar). Inference serving
systems using MPS [9, 12, 15, 16, 55, 61, 72] for spatial sharing do
not account for MPS’s interference when placing jobs together (e.g.,
InstaInfer simply bin packs MPS GPUs until it saturates GPU mem-
ory [61]). Other works leveraging MIG [30, 33, 34, 62, 63, 71] use
simple carbon-agnostic placement policies to bin-pack GPUs; we
show in § 3 that placing "incompatible” models together can increase
carbon emissions compared to dedicating a GPU per model.

Other works deploy GPU runtimes that manually schedule com-
patible kernels to avoid interference [4, 11, 23, 54, 57, 60, 68] or en-
able concurrent model execution via operation fusion [17, 26, 57, 74].
However, these systems (a) assume strict job prioritization [23, 60],
(b) require cooperation across tenants and cumbersome control-
plane operations to construct super kernels [17, 26, 57, 74], and/or
(c) require expensive profiling [4, 11, 23, 27, 54, 57, 60, 68]. Crucially,
none examine the carbon impact of sharing GPUs or the potential of
tuning the frequency of shared GPUs to improve carbon efficiency.

GPU frequency scaling. All recent works that scale GPU fre—...-§,

w

quency to reduce power draw assume the GPU is not spatially
shared [28, 44, 51-53, 59, 69, 73]. Moreover, these works do not
account for the carbon intensity of the energy source when making
scaling decisions. We show in § 4.2 that scaling frequency while
spatially sharing GPUs depends on (1) the energy source’s carbon
intensity, and (2) the number and set of co-located models.

GPU power modeling. Previous works that estimate GPU power
draw rely on expensive profiling of low-level hardware usage [3, 5,
18, 24, 29, 31, 36, 58, 65]. Leveraging these works in shared GPU en-
vironments requires profiling every feasible combination of models
to obtain the input data (e.g., hardware usage) needed for the re-
spective modeling technique. This is prohibitive because of the pace
at which new models are being introduced and the combinatorially

large space of potgntial medel comhinations. .
WX QO Fds Bk, s oo Complicated.
3 CHARACTERIZATION

In this section, we study the tradeoff between latency and carbon
efficiency with and without sharing (Q1), analyze if spatial sharing

Volume 5 Issue 2, July 2025

asSd

Y

(ovoetey

M
e
“t

2.2¥ Previous Related Work—SFﬂ’M Id’ .}ofcafm

s

|y s

<
Yo St 9

A

¥

—a

)
W
2
r 4

A

X POl e e,

always reduces emissions (Q2), and study the impact of inference
workload characteristics on carbon efficiency (Q3).

Methodology. We compare the carbon emissions and per-request
latency of serving models concurrently on a single GPU versus a
GPU per model. We use four popular models from MLPerf’s Datacen-
ter Inference Benchmark [42]: SDXL (image generation), MobileNet
(MNet, image classification), GPT-J-6B (GPT, text summarization),
and Whisper (Whis, speech-to-text). Model sets have up to three
models; for a fair comparison, each model serves the same number
of requests with and without sharing (roughly five minutes worth).
Unless noted otherwise, requests arrive in a closed-loop pattern,
evaluating the model under steady-state peak load [51, 60, 67]; we
study other patterns/loads in Q3.

We conduct our study on an NVIDIA A100 GPU using MIG for
spatial sharing. We leave exploring the carbon efficiency with other
spatial sharing mechanisms (e.g., MPS) as future work. For sets with
two models, we allocate the larger model 4/7 of the GPU (MIG
configures GPUs into sevenths[41]) and the other 3/7; for sets of
three, we allocate the largest model 3/7 and the other two 2/7. This
simple MIG sizing policy suffices for our study; optimizing MIG
allocations for improved carbon efficiency is left for future work.
Modeling carbon emissions, To estimate the carbon emissions
of a workload, we levera&analytical models. We use
their customer-based carbon-accounting methodology to estimate
emissions, where carbon is attributed only when a user is using
the device. Formally, the net emissions of,segving a workload of

inference requests are: kO'“ ' P(O&Od.‘m
C’]‘ =C0+CEeaM WW

where Cp and Cg are the operational and embodied emissions to
serve the workload, respectively.

We model operational emissions (Cp) based on the carbon inten-
sity (CI) of the grid’s energy source and the net energy (E) consumed
by the GPU(s) while serving a workload (energy is the total amount
of GPU power drawn P over the workload duration). Formally,

CO:CIXE:CIX/Pdt @)

We observe the energy consumption of each GPU used to serve
the requests of a workload using the NVIDIA Management Library
(NVML) [47], sampled at coarse granularity (1Hz) to mitigate energy
consumption alterations due to sampling. We use gas as the default
energy source, which has a carbon intensity of approximately 490
gCO2/kWh [22]. Due to the high carbon intensity of gas, opera-
tional emissions tend to dominate net emissions; however, in Q3 we
explore how different energy sources impact the efficacy of GPU
sharing in reducing net emissions.

We model the embodied carbon footprint of manufacturing an
A100 GPU (Cypy) by accounting for its processor chip area and mem-
ory capacity from the GPU’s datasheet [1]. As we are only interested
in the embodied footprint of manufacturing the GPU itself, we do
not consider other server components (e.g., CPU, SSD) in our cal-
culations. Our estimations yield that manufacturing a single A100
PCle 40GB GPU emits 21.56 kgCO2. We note that the ACT model
does not account for the embodied footprint of the power delivery
network, printed wiring board, or GPU cooling (e.g., heat sink), all of

(donn Yoo

a0t Rae Saut S

/-. No Sharing B Sharing
>
25107t o 192
- el

MNet Whis Whis GPT GPT Whis MNet
_75 150 200
N>
o 250 100
CE2s . 50 I 100
0 [= O (== e
Oper. Emb. Oper. Emb. Oper. Emb.

Fig. 2. Spatial sharing (blue) can reduce embodied and operational
emissions without significantly degrading inference latency compared
to dedicating a GPU per model (red). Data for 3 model sets (one per
column). See § 3 Q1.

[No Sharing EEE Sharing

1 1
ol .
[OR] 0 -1
=) 10 10
82, i - __
— SDXL GPT Whis SDXL MNet SDXL
€400 300 300
"200 200 200
g 100 100
o 0 Oper. Emb. 0 Oper. Emb. 0 Oper. Emb.

Fig. 3. Sharing GPUs can lead to increased net carbon emissions com-
pared to dedicating a GPU per model. See § 3 Q2.

which would increase our estimated carbon footprint. Nonetheless,
we find that even if we double or quadruple the embodied footprint
estimation, our takeaways and findings hold.

The ACT methodology attributes the embodied carbon emissions
of a workload by the ratio between the workload’s execution time
(T) and the GPU’s lifetime (LT). Therefore, the embodied footprint
for serving a workload of inference requests is given by:

C—TxC (3)
E= 7 Xtm

In this work, we assume a total GPU lifeti pical of
datacenter components [22, 50]. a&" {
. By

Q1. What is the tradeoff between latency and carbon emissions

when concurrently executing multiple inference jobs on a GPU?
\ J

Fig. 2 presents the inference latency and carbon footprint for three
sets of models with and without spatial sharing. Across model sets,
spatial sharing slightly increases latency compared to dedicating a
GPU per model: in set 2, Whisper and GPT’s latency increases by
1.27x and 1.14X, respectively. However, spatial shari j
each model]
i eanwhile, it reduces the operational
sions by 28% on average (up to 40%) and embodied emissions
by 52% on average (up to 62%). While dedicating a model per GPU
reduces inference latency, the GPU-hours spent serving the same
set of models grow (GPUs allocated to the set doubles or triples),
thereby increasing the embodied carbon footprint.

Takeaway #1: Spatial sharing offers an opportunity to reduce the
operational and embodied carbon footprint of inference serving work-
loads, albeit it must be leveraged carefully, are met, as

it increases inference latency. hw &w m mq,”‘

Vs

Q2. While spatial sharing always improves GPU utilization, does it
always reduce carbon emissions?

Volume 5 Issue 2, July 2025

ooQ"‘-

= No Sharing [l Sharin

O ~ 1000 .

g

£ E 500 . /\M

= FH /ml wm
40 80 100

Load (%)
Fig. 4. Comparison of the total carbon emissions with and without
sharing as load fluctuates. The load impacts spatial sharing’s carbon
efficiency versus no sharing. Data for SDXL/Whisper. See § 3 Q3.

A No Sharlng I Sharing
Coal 200 Solar

=)
— € 6
3 20 .
ey T
(@) Oper Emb. Net Oper Emb. Net Oper Emb. Net
Nuclear Wind

=)
553 h:
s
=] 10 10
cgif I I
st ol mill 0 wl
(@) Oper. Emb. Net Oper Emb. Net Oper. Emb. Net
Fig. 5. Comparison of the operational, embodied, and net carbon emis-
sions with and without GPU sharing under different energy sources.

The energy source impacts spatial sharing’s carbon efficiency com-
pared to no sharing. Data for SDXL/Whisper. § 3 Q3.

Hydro

With the aim of improving carbon efficiency, we revisit and criti-

cally examine the premise underlying prior GPU sharing approaches
— underutilized GPUs should be shared across models, provided their
latency needs are satisfied. Fig. 3 details the inference latency and
carbon footprint for three new model sets. All models continue to
meet their SLOs. However, across the three model sets where each
model individually has poor GPU utilization (Fig. 1, left plot red bar),
spatial sharing increases operational emissions by 15% on average.
SDXL'’s inference latency increases by 1.6x under spatial sharing, a
significantly larger increase than the model sets in Fig. 2. Hence, the
total time to serve all the requests in the workload grows by 1.6X,
increasing the overall GPU energy consumption and operational
emissions. Thus, the carbon efficiency of spatial sharing depends
heavily on the set of models co-located on a GPU.
Takeaway #2: The notion that higher GPU utilization is inherently
sustainable is a fallacy. Utilization-centered resource management
policies do not always reduce emissions: placing certain models together
trades off reducing embodied emissions versus increasing operational
emissions. We need new carbon-centric policies to ensure concurrent
execution does not inflate carbon emissions.

Q3. What factors drive the carbon efficiency for inference serving

workloads executing on shared GPUs?

Given that sharing is not always carbon-efficient (Q2), we next
analyze how workload factors—load, energy sources, and input/out-
put requirements—drive the carbon efficiency for inference serving
workloads executing on shared GPUs.

Impact of load. Our experiments in Q2 evaluated the model sets
under high load. We study how changing load drives carbon effi-
ciency with the model set SDXL/Whisper, used in Q2 (findings hold
for the other model sets). We scale each model’s load (requests per
second) as a percentage of the maximum throughput it can support,

arriving iWThe efficacy of using GPU
sharing to n emissions varies depending on the

ACM SIGENERGY Energy Informatics Review

Ahoton
)\\u\‘sw s

Ao ndr
&ﬁ%‘m ('a«n:a\hu

EEE No Sharing EEE Sharing
Whis/SDXL 256

@15 — Whis/SDXL 1024 ~

g e 2400 2400

210 o, E E

§ 5 ._.—.’._‘/ 8200 8200

© O o0 — 3 Mm —
— 500 1000 Oper. Emb. Oper. Emb.

SDXL Resolution
Fig. 6. CO2 for SDXL/Whisper when SDXL generates TKX 1K resolu-
tion images vs. 256X256. Input/output requirements impact spatial
sharing’s efficacy in reducing emissions. See § 3 Q3.

load (Fig. 4). At higher loads (>70%), concurrent execution increases
emissions by 1.2X, but at lower loads, it reduces emissions by 1.41x
on average (1.73X max). At low loads, spatial sharing increases
workload completion time by just 5%, but greatly reduces total GPU
power draw (1.54X on average). This is because without sharing, an
extra GPU unnecessarily draws a static 40-50W while waiting for
requests, increasing total power draw and operational emissions.
At high load, isolated execution increases the total power drawn
by 1.2X, but reduces workload completion time by 1.33x (Fig. 3),
lowering overall operational emissions.

Takeaway #3: Load is a key driver of the carbon efficiency of inference
serving workloads spatially sharing a GPU. For the same model set, at
high load, sharing can increase net emissions by inflating operational
emissions despite reducing embodied ones, while at low/medium load,
spatial sharing can reduce both, eliminating the tradeoff entirely.
Impact of energy sources. So far, we reported emissions assuming
a gas energy source. We next study the impact of different energy
sources. Fig. 5 breaks down the operational, embodied, and total
emissions for SDXL/Whisper across energy sources (findings hold
for other model sets). Spatial sharing reduces embodied emissions
by 27% compared to no sharing, regardless of the energy source
(the energy source does not impact the magnitude of embodied
emissions, Equation 3). However, while spatial sharing increases
operational emissions for this model set regardless of the energy
source, the magnitude of the operational emissions varies with the
energy source due to large variation (74X [22]) in carbon intensity
across sources.

This variation alters spatial sharing’s impact on net emissions,
as it shifts whether operational or embodied emissions dominate.
For instance, with gas, spatial sharing inflates emissions by 30%
compared to isolated execution since operational emissions dom-
inate. However, with wind energy, spatial sharing cuts emissions
by 20%. Despite the slight increase in operational emissions (6.17
to 8.27 mgCO2), spatial sharing reduces the dominating embodied
emissions by 22% by using one GPU to serve the workload.
Takeaway #4: The energy source shifts which types of emissions
dominate the net carbon footprint. Hence, it changes the efficacy of
spatial sharing to reduce carbon emissions for a given model set. As the
energy source of the grid powering data centers varies daily (sometimes
hourly) [20], serving systems must adjust spatial sharing decisions
across a cluster to optimize carbon emissions over time.

Impact of model input/output requirements. We end our analy-
sis with studying the impact of varying model input/output require-
ments. Previous works study this when executing a single task on
a GPU [32, 59]; we study the extent of their impact in shared GPU
settings. We observe SDXL/Whisper (findings hold for other model
sets) as we change the image resolution SDXL generates. Fig. 6

Volume 5 Issue 2, July 2025

e KOE | 20, Vg oot

shows that lowering resolution reduces SDXL’s latency by 5.2X%,
with or without spatial sharing: decreasing resolution quadratically
reduces the dimensions of the latent space that SDXL’s U-Net oper-
ates on, thereby reducing convolutional operations. This variation in
output requirements greatly impacts carbon efficiency: spatial shar-
ing increases emissions by 14% for 1Kx1K images but reduces them
by 32% for 256x256 images. This is because the total time to serve
the workload under spatial sharing reduces by 1.92x when generat-
ing low-resolution images. Although isolated execution serves the
workload faster (by 5s), the energy savings from using one GPU
with spatial sharing outweigh the slight latency increase.
Takeaway #5: Model architecture and input/output requirements
are key drivers impacting carbon efficiency. For certain model require-
ments, the increased execution time from spatial sharing inflates oper-
ational emissions, while for others, the latency increase is negligible
compared to the energy savings from using fewer GPUs.

4 CARBON-EFFICIENT INFERENCE SERVING

Our study highlights the utilization fallacy: optimizing for utiliza-
tion alone does not always ensure carbon-efficient inference serving.
The impact of sharing GPUs to reduce emissions depends on several
drivers (co-located models, request rate, model input/output re-
quirements, and energy sources), which prior works overlook from
a carbon lens. Thus, we require new systems with novel carbon-
centric policies and mechanisms. In this section, we explore several
next steps towards a carbon-efficient inference serving system.

4.1 Efficient Power Estimation for GPU Sharing

Ideally, the policies governing resource management decisions should
account for the carbon-efficiency drivers to reduce the emissions
of serving inference workloads. However, to do so requires under-
standing how concurrent model serving affects GPU power and
inference latency, which impact operational and embodied emis-
sions (Equations 2 and 3). MIG’s strong isolation makes it relatively
simple to forecast a model’s inference latency since it is not affected
by the other models it is placed with: we can quickly offline profile
(<30s) a model’s latency under each MIG partition, independent
of other models. However, efficiently estimating the power of a
GPU concurrently serving models is non-trivial. Offline profiling
all model sets is infeasible due to the combinatorially large number
of unique sets. Thus, we propose a preliminary methodology that
combines analytical models with high-level profiling to efficiently
and accurately estimate GPU power under concurrent execution.
Modeling GPU power draw when sharing. Traditionally, total
GPU power draw Pr is broken down at a high level as:

PT=P5+PD

©

Pg is the GPU’s static power draw that is constant and workload-
agnostic (Ps =~ 45W for A100s) [10, 37]. Pp is the GPU’s dynamic
power draw, which fluctuates with frequency, voltage, and work-
loads. We first used this simple model to estimate a GPU’s power
draw that concurrently serves models. We estimated each model’s
Pp in isolation under its MIG slice (Pt — Ps, observed via offline
profiling) and then summed each model’s Pp with Ps for a final es-
timate. However, this estimation severely overestimates GPU power
(1.8 on average, Fig. 7 red bar). Unlike the power-gated compute

ACM SIGENERGY Energy Informatics Review

80

ESummed EOurs EObserved

MNet/GPT GPT/SDXL Whis/SDXL SDXL/Whis/MNet
> 2100 200 200 200
(TR
& 0 0 0 0

Fig. 7. Observed vs estimated GPU power drawn when sharing using
two proposed power models. See § 4.1.

units [29], shared auxiliary components (e.g., L2 cache, memory con-
trollers, interconnects, peripheral interfaces) remain active when
any MIG slice is in use [29]. Hence, this estimation double-counts
the power draw of auxiliary components.

To remove the double-counting, we break down Pp as the power
of the compute units Pc, which are power-gated, and the power of
the other components Pp which are not. We further decompose Po,
the power we are double-counting, as the dynamic power draw of
the auxiliary components when active Pp 4 and idle Po; [38]. With
this, we model a GPU’s dynamic power draw as:
®)
Poy is independent of the workload(s) [2, 38], but Pc and Ppy4 are
workload-specific. Moreover, all three components vary with GPU
frequency. Hence, accurately estimating GPU power draw while con-
currently serving models requires understanding the implications
of the frequency level and determining each model’s Pc and Pp4.
Unfortunately, current tools (e.g., nvidia-smi [48], NSight [45, 46])
lack support for such fine-grained power information. As a first step
in this work, we make a few simplifications to derive these values.
We assume the frequency is fixed at 1410 MHz (we leave accounting
for different frequency levels as future work). We also assume Pp4
is additive across models. We then model the total GPU power when
concurrently serving multiple models as:

Pp = Pc + Ppyg + Por

N
Pr(My...My) =Ps+Por + Z Pe(i) + Poal(i)

i=1

(6)

To solve Equation 6 for a given set of models, we use high-level
profiling to derive Ppj, as well as Pc and Pp4 per model i.
High-level profiling. We first estimate the value of Po, which
is a one-time cost since it is workload-agnostic. To determine Ppy,
we solve a 3x3 set of equations using Equation 6 with three un-
knowns: Por, Pc, and Pp 4. We deploy one, two, and three instances
of the same model (e.g., MobileNet), each given a 1/7 MIG slice, and
observe the GPU power while serving dummy requests. While Pg
and Ppy are constant, Pc and Pp 4 scale linearly by the number of
instances (Pc3 with three instances of a model is 3 X Pcqp). With
this information, we solve the equations and find Po; ~ 25W. This
profiling takes <1 minute.

With an estimate of Poj, we next use high-level profiling to es-
timate values for Pc and Pp4. Unlike Poy, Pc and Ppoy vary per
model. Since modern GPUs power-gate compute units [29], Pc de-
pends on the MIG slice; Po4 does not, as auxiliary components are
not power-gated [29]. We estimate Pp4 by solving a 2 X 2 system
of equations with Equation 6 (two unknowns, Pc and Pp4) using
power measurements observed when one and two instances of the
given model, each allocated a 1/7 MIG slice, serve dummy requests.
Then, to determine Pc for a model, we deploy the model under
each MIG slice, measure total GPU power while it serves dummy

Volume 5 Issue 2, July 2025

—e— No Sharing —e— Sharing
GPT/Whis/MNet SDXL/Whis/MNet

© v > PN B @ oo _o-0" Oln a0 a-e-®
ES P00 s reeee® 100883883 ce 120 S688855°
8 3E 100 50 50
w
o__ 00.751.00125 20.751.001.25 %0.751.001.25
(o) - - -
ES ? 30/7%-0-0}0-0-0-0-0 >(. ®-0-0.9-0-0-5® 20 ._::o— o-o—:
NS %8 ®6-0-0:0-0-000 10" >000000e 10 e
O=zuw
o 09.751.001.25 %.751.00125 90.751.001.25

GPU Freq (GHz) GPU Freq (GHz) GPU Freq (GHz)

Fig. 8. Tuning frequency of shared GPUs to the model set and energy
source can further reduce emissions. See § 4.2.

requests, and compute Pc for that slice by rearranging Equations 4
and 5. The profiling process to estimate Pp4 and Pc per model takes
<2 minutes.

Efficacy of our methodology. With four model sets, Figure 6
shows that our methodology (blue bar) accurately estimates aver-
age GPU power during concurrent execution. Compared to sum-
ming each model’s estimated dynamic GPU power (26% error), our
technique improves estimation accuracy (only 15% average error).
However, we still overestimate by 1.2X on average. We suspect this
error stems from our assumption that Pp 4 is additive across models.
We discuss techniques to explore as future work that are promising
in further improving our estimations.

Practically profiling one-level deeper. Kernel-level profiling
can offer higher accuracy, albeit it is expensive: profiling GPT-J-6B
kernel-level utilization and power draw took 3 hours [45]. However,
we find that (1) a small set of kernel types dominate latency [57],
and (2) these kernels are shared across model types, differing mainly
in data size (results omitted for brevity). This offers a practical path
forward: profile key kernels once to learn how power scales with
data size and utilization, then use each model’s kernel trace to build
accurate power profiles without costly per-model profiling.

A call to action. Previous works offer accurate power predictions
via fine-grained modeling [3, 29, 31]. However, applying these meth-
ods to shared GPUs requires expensive profiling for each model set,
which is prohibitive due to the exponential number of unique sets.
We propose building individual model profiles by profiling common
kernels across model types, ensuring this low-level profiling is a
one-time cost. However, we require further research to build tools
that use these model-level profiles to provide accurate estimations
that capture the internal GPU intricacies of concurrent execution.

4.2 Tuning Frequency while Sharing GPUs

Prior works show tuning GPU frequency can reduce energy con-
sumption (§ 2), but its impact in shared GPU settings remains unex-
plored. Combining frequency tuning with GPU sharing may increase
emissions, as both inflate inference latency. Hence, we observe the
impact of frequency scaling with and without spatial sharing under
different model sets and energy sources (findings are similar for
load and input/output requirements). Fig. 8 shows that scaling the
frequency of shared GPUs can reduce emissions, albeit it must be
tuned to the model set and energy source. For example, with gas,
concurrently executing GPT/Whisper/MobileNet (top left) at 0.87
GHz cuts emissions by 1.43x compared to spatially sharing at 1.41
GHz and by 1.82x compared to dedicating a GPU per model at 1.41
GHz. All models continue to meet the SLOs (omitted for brevity).
However, by simply replacing GPT with SDXL (256x256 images) in

ACM SIGENERGY Energy Informatics Review

81

the model set, the optimal frequency changes to 0.96 GHz, while
1.14 GHz is best for the set with just two models GPT/Whisper.
Similarly, the energy source impacts optimal frequency. With wind
energy, 1.23 GHz is best for GPT/Whisper/MobileNet, not 0.87 GHz
like gas. Lower frequencies reduce operational emissions by cutting
energy use, but inflate embodied emissions by increasing latency.
Thus, under low carbon intensity periods (wind), higher frequencies
are favorable, as embodied emissions dominate.

A call to action. Tuning the frequency of shared GPUs to the
model set and carbon-efficiency drivers can further reduce emis-
sions (Fig. 8). However, all MIG slices are forced to operate at the
same frequency. Fine-grained frequency control per slice could re-
duce operational emissions by improving GPU sharing efficiency
and tailoring performance to diverse model SLOs. This is becom-
ing increasingly feasible as GPUs scale and chiplet-based designs
emerge [14]. However, doing so may raise embodied emissions with
added circuit complexity, requiring a detailed trade-off analysis.

4.3 Heterogeneous GPU Clusters

This work evaluates spatial sharing using A100 GPUs. Further re-
search is required to investigate whether spatially sharing older
GPUs can yield greater carbon efficiency compared to deploying
newer hardware. Prior studies show the efficacy of leveraging het-
erogeneous clusters while not spatially sharing GPUs. However,
sharing older GPUs introduces new challenges. It requires navigat-
ing a larger deployment search space, as now the system needs to
choose which models to place together and which GPUs to use, both
of which are dependent on each other. Moreover, older GPUs only
support MPS, which can introduce interference between co-located
jobs. Hence, spatial sharing on older hardware using MPS requires
carefully constructing model sets to minimize interference.

5 CONCLUSION

This work presents our vision towards carbon-efficient inference
serving. We study the efficacy of leveraging GPU sharing mecha-
nisms to reduce carbon emissions across various models and het-
erogeneous workloads. We find that optimizing for utilization does
not always reduce carbon emissions, and that the tradeoff between
utilization and carbon depends on load, energy sources, and model
input/output requirements. We take a first step towards carbon-
efficient inference serving by introducing a fast, accurate methodol-
ogy to estimate GPU power under concurrent model execution and
show that tuning the frequency of shared GPUs to the model set
and key carbon-efficiency drivers can further reduce emissions. Our
work lays the foundation for rethinking systems and infrastructure
to improve the sustainability of inference serving.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful feedback. We
thank the members of the UT-SysML research group for their in-
sightful discussions to improve this work. We also thank Vivek
Chawda for his helpful feedback on the introduction. This work was
supported by the UT ECE junior faculty start-up fund, UT iMAGINE
consortium and its industrial affiliates, an award from the UT Ma-
chine Learning Lab (MLL), the AMD Chair Endowment, the Cisco
Research Award, and the Amazon Research Award.

Volume 5 Issue 2, July 2025

REFERENCES

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

al100-whitepaper [n.d.]. NVIDIA A100 Tensor Core GPU Architec-
ture. https://images.nvidia.com/aem-dam/en-zz/Solutions/data- center/nvidia-
ampere-architecture-whitepaper.pdf.

Yuvraj Agarwal, Stefan Savage, and Rajesh Gupta. 2010. {SleepServer}: A
{Software-Only} Approach for Reducing the Energy Consumption of {PCs}
within Enterprise Environments. In 2010 USENIX Annual Technical Conference
(USENIX ATC 10).

Gargi Alavani, Jineet Desai, Snehanshu Saha, and Santonu Sarkar. 2023. Program
Analysis and Machine Learning-based Approach to Predict Power Consumption
of CUDA Kernel. ACM Trans. Model. Perform. Eval. Comput. Syst. 8, 4, Article 10
(July 2023), 24 pages. https://doi.org/10.1145/3603533

Tyler Allen, Xizhou Feng, and Rong Ge. 2019. Slate: Enabling Workload-Aware
Efficient Multiprocessing for Modern GPGPUs. In 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 252-261. https://doi.org/10.1109/
IPDPS.2019.00035

Akhil Arunkumar, Evgeny Bolotin, David Nellans, and Carole-Jean Wu. 2019.
Understanding the Future of Energy Efficiency in Multi-Module GPUs. In 2019
IEEE International Symposium on High Performance Computer Architecture (HPCA).
519-532. https://doi.org/10.1109/HPCA.2019.00063

AWS Inferentia [n.d.]. AWS Inferentia. https://aws.amazon.com/ai/machine-
learning/inferentia/.

azure-ml-investment [n. d.]. Microsoft News . https://news.microsoft.com/apac/
2024/04/10/microsoft- to-invest-us2- 9-billion-in-ai-and- cloud-infrastructure-
in-japan-while-boosting- the-nations-skills- research-and- cybersecurity/.
azure-ml-investment2 [n. d.]. Microsoft Azure Blog: Our investment in Al infras-
tructure, skills and security to boost the UK’s Al potential . https://blogs.microsoft.
com/on-the-issues/2023/11/30/uk-ai- skilling- security-datacenters-investment/.
Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020. PipeSwitch: Fast Pipelined
Context Switching for Deep Learning Applications. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). USENIX Association,
499-514. https://www.usenix.org/conference/osdi20/presentation/bai

J Adam Butts and Gurindar S Sohi. 2000. A static power model for architects. In
Proceedings of the 33rd annual ACM/IEEE international symposium on Microarchi-
tecture. 191-201.

Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, and
Jaehyuk Huh. 2022. Serving Heterogeneous Machine Learning Models on Multi-
GPU Servers with Spatio-Temporal Sharing. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 199-216. https:
//www.usenix.org/conference/atc22/presentation/choi-seungbeom

Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, and
Jaehyuk Huh. 2022. Serving Heterogeneous Machine Learning Models on Multi-
GPU Servers with Spatio-Temporal Sharing. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 199-216. https:
//www.usenix.org/conference/atc22/presentation/choi-seungbeom

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. In 14th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17). USENIX Association, Boston, MA, 613-627. https://www.usenix.
org/conference/nsdil7/technical-sessions/presentation/crankshaw

Preyesh Dalmia, Rajesh Shashi Kumar, and Matthew D Sinclair. 2024. CPElide:
Efficient Multi-Chiplet GPU Implicit Synchronization. In 2024 57th [EEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 700-717.

Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. 2020. GSLICE:
Controlled Spatial Sharing of GPUs for a Scalable Inference Platform. In Pro-
ceedings of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)
(SoCC °20). Association for Computing Machinery, New York, NY, USA, 492-506.
https://doi.org/10.1145/3419111.3421284

Aditya Dhakal, K. K. Ramakrishnan, Sameer G. Kulkarni, Puneet Sharma, and
Junguk Cho. 2022. Slice-Tune: A System for High Performance DNN Autotuning.
In Proceedings of the 23rd ACM/IFIP International Middleware Conference (Quebec,
QC, Canada) (Middleware ’22). Association for Computing Machinery, New York,
NY, USA, 228-240. https://doi.org/10.1145/3528535.3565247

Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko, and Song Han. 2020.
10S: Inter-Operator Scheduler for CNN Acceleration. (2020).

Bishwajit Dutta, Vignesh Adhinarayanan, and Wu-chun Feng. 2018. GPU power
prediction via ensemble machine learning for DVFS space exploration. In Proceed-
ings of the 15th ACM International Conference on Computing Frontiers (Ischia, Italy)
(CF ’18). Association for Computing Machinery, New York, NY, USA, 240-243.
https://doi.org/10.1145/3203217.3203273

google-sre-slos [n. d.]. Google SRE Workbook: Implementing SLOs. https://sre.
google/workbook/implementing-slos/.

Viktor Urban Gsteiger, Pin Hong (Daniel) Long, Yiran (Jerry) Sun, Parshan
Javanrood, and Mohammad Shahrad. 2024. Caribou: Fine-Grained Geospa-
tial Shifting of Serverless Applications for Sustainability. In Proceedings of the
ACM SIGOPS 30th Symposium on Operating Systems Principles (Austin, TX, USA)

ACM SIGENERGY Energy Informatics Review

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

(35]

[36]

(SOSP °24). Association for Computing Machinery, New York, NY, USA, 403-420.
https://doi.org/10.1145/3694715.3695954

Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. 2020. Serving DNNs like Clockwork: Performance
Predictability from the Bottom Up. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association, 443-462.
https://www.usenix.org/conference/osdi20/presentation/gujarati

Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David
Brooks, and Carole-Jean Wu. 2022. ACT: designing sustainable computer systems
with an architectural carbon modeling tool. In Proceedings of the 49th Annual
International Symposium on Computer Architecture (New York, New York) (ISCA
"22). Association for Computing Machinery, New York, NY, USA, 784-799. https:
//doi.org/10.1145/3470496.3527408

Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022. Microsecond-
scale preemption for concurrent { GPU-accelerated} {DNN} inferences. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 22).
539-558.

Sunpyo Hong and Hyesoon Kim. 2010. An integrated GPU power and performance
model. SIGARCH Comput. Archit. News 38, 3 (June 2010), 280-289. https://doi.
org/10.1145/1816038.1815998

Ali Jahanshahi, Mohammadreza Rezvani, and Daniel Wong. 2024. WattWiser:
Power & Resource-Efficient Scheduling for Multi-Model Multi-GPU Inference
Servers. In Proceedings of the 14th International Green and Sustainable Comput-
ing Conference (Toronto, ON, Canada) (IGSC °23). Association for Computing
Machinery, New York, NY, USA, 39-44. https://doi.org/10.1145/3634769.3634807
Paras Jain, Xiangxi Mo, Ajay Jain, Harikaran Subbaraj, Rehan Sohail Durrani,
Alexey Tumanov, Joseph Gonzalez, and Ion Stoica. 2018. Dynamic Space-Time
Scheduling for GPU Inference. In Workshop on Systems for ML and Open Source
Software at NeurIPS 2018. mlsys.org. http://arxiv.org/abs/1901.00041

Saksham Jain, Iljoo Baek, Shige Wang, and Ragunathan Rajkumar. 2019. Fractional
GPUs: Software-Based Compute and Memory Bandwidth Reservation for GPUs.
In 2019 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). 29-41. https://doi.org/10.1109/RTAS.2019.00011

Andreas Kosmas Kakolyris, Dimosthenis Masouros, Sotirios Xydis, and Dimitrios
Soudris. 2024. SLO-Aware GPU DVFS for Energy-Efficient LLM Inference Serving.
IEEE Comput. Archit. Lett. 23, 2 (July 2024), 150-153. https://doi.org/10.1109/
LCA.2024.3406038

Vijay Kandiah, Scott Peverelle, Mahmoud Khairy, Junrui Pan, Amogh Manjunath,
Timothy G. Rogers, Tor M. Aamodt, and Nikos Hardavellas. 2021. AccelWattch:
A Power Modeling Framework for Modern GPUs. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture (Virtual Event, Greece)
(MICRO °21). Association for Computing Machinery, New York, NY, USA, 738-753.
https://doi.org/10.1145/3466752.3480063

Munkyu Lee, Sihoon Seong, Minki Kang, Jihyuk Lee, Gap-Joo Na, In-Geol Chun,
Dimitrios Nikolopoulos, and Cheol-Ho Hong. 2024. ParvaGPU: Efficient Spatial
GPU Sharing for Large-Scale DNN Inference in Cloud Environments . In SC24:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE Computer Society, Los Alamitos, CA, USA, 1-14. https:
//doi.org/10.1109/SC41406.2024.00048

Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung
Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013. GPUWattch: enabling
energy optimizations in GPGPUs. In Proceedings of the 40th Annual Interna-
tional Symposium on Computer Architecture (Tel-Aviv, Israel) (ISCA ’13). As-
sociation for Computing Machinery, New York, NY, USA, 487-498. https:
//doi.org/10.1145/2485922.2485964

Baolin Li, Yankai Jiang, and Devesh Tiwari. 2025. Carbon in Motion: Char-
acterizing Open-Sora on the Sustainability of Generative Al for Video Gen-
eration. SIGENERGY Energy Inform. Rev. 4, 5 (April 2025), 160-165. https:
//doi.org/10.1145/3727200.3727224

Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari.
2022. MISO. In Proceedings of the 13th Symposium on Cloud Computing. ACM.
https://doi.org/10.1145/3542929.3563510

Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. 2023. Clover:
Toward Sustainable AI with Carbon-Aware Machine Learning Inference Service.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Denver, CO, USA) (SC ’23). Association for
Computing Machinery, New York, NY, USA, Article 20, 15 pages. https://doi.
org/10.1145/3581784.3607034

Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin
Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E. Gonzalez, and Ion
Stoica. 2023. AlpaServe: Statistical Multiplexing with Model Parallelism for
Deep Learning Serving. In 17th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 23). USENIX Association, Boston, MA, 663-679.
https://www.usenix.org/conference/osdi23/presentation/li-zhouhan

Jieun Lim, Nagesh B. Lakshminarayana, Hyesoon Kim, William Song, Sudhakar
Yalamanchili, and Wonyong Sung. 2014. Power Modeling for GPU Architectures

Volume 5 Issue 2, July 2025

[37]

[38]

[39]

[40]
[41]
[42]
[43]

[44]

[45]
[46]
[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Using McPAT. ACM Trans. Des. Autom. Electron. Syst. 19, 3, Article 26 (June 2014),
24 pages. https://doi.org/10.1145/2611758

Steven M Martin, Krisztian Flautner, Trevor Mudge, and David Blaauw. 2002.
Combined dynamic voltage scaling and adaptive body biasing for lower power
microprocessors under dynamic workloads. In Proceedings of the 2002 IEEE/ACM
international conference on Computer-aided design. 721-725.

David Meisner, Brian T Gold, and Thomas F Wenisch. 2009. Powernap: eliminating
server idle power. ACM SIGARCH Computer Architecture News 37, 1 (2009), 205—
216.

meta-ml-investment [n.d.]. Engineering at Meta: Building Meta’s GenAlI In-
frastructure. https://engineering.fb.com/2024/03/12/data-center-engineering/
building-metas-genai-infrastructure/.

MIG [n.d.]. NVIDIA Multi Instance GPU. https://www.nvidia.com/en-us/
technologies/multi-instance-gpu/.

mig-docs [n.d.]. NVIDIA Multi-Instance GPU User Guide. https://docs.nvidia.
com/datacenter/tesla/mig-user-guide/index.html.
mlperf [n.d.]. MLPerf Inference: Datacenter.
benchmarks/inference-datacenter/.

MPS [n.d.]. NVIDIA Multi Process Service. https://docs.nvidia.com/deploy/mps.
Seyed Morteza Nabavinejad, Sherief Reda, and Masoumeh Ebrahimi. 2021. Batch-
Sizer: Power-Performance Trade-off for DNN Inference. In 2021 26th Asia and
South Pacific Design Automation Conference (ASP-DAC). 819-824.
nsight-compute [n. d.]. NVIDIA Nsight Compute. https://developer.nvidia.com/
nsight-compute.

nsight-system [n.d.]. NVIDIA NSight Systems. https://developer.nvidia.com/
nsight-systems.

nsys [n. d.]. NVIDIA Management Library (NVML). https://developer.nvidia.com/
management-library-nvml.

nvidia-smi [n. d.]. NVIDIA System Management Interface SMIL https://developer.
nvidia.com/system-management-interface.

Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-
wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. TensorFlow-
Serving: Flexible, High-Performance ML Serving. arXiv:1712.06139 [cs.DC]
https://arxiv.org/abs/1712.06139

George Ostrouchov, Don Maxwell, Rizwan A. Ashraf, Christian Engelmann,
Mallikarjun Shankar, and James H. Rogers. 2020. GPU lifetimes on titan super-
computer: survival analysis and reliability. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Atlanta, Georgia) (SC "20). IEEE Press, Article 41, 14 pages.

Pratyush Patel, Esha Choukse, Chaojie Zhang, iﬁigo Goiri, Brijesh Warrier, Nithish
Mahalingam, and Ricardo Bianchini. 2024. Characterizing Power Management
Opportunities for LLMs in the Cloud. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, Volume 3 (La Jolla, CA, USA) (ASPLOS °24). Association for Computing Ma-
chinery, New York, NY, USA, 207-222. https://doi.org/10.1145/3620666.3651329
Pratyush Patel, Esha Choukse, Chaojie Zhang, fﬁigo Goiri, Brijesh Warrier, Nithish
Mahalingam, and Ricardo Bianchini. 2023. POLCA: Power Oversubscription in
LLM Cloud Providers. arXiv:2308.12908 [cs.DC] https://arxiv.org/abs/2308.12908
Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang,
Hubertus Franke, Zbigniew Kalbarczyk, Tamer Basar, and Ravishankar K. Iyer.
2024. Power-aware Deep Learning Model Serving with p-Serve. In 2024 USENIX
Annual Technical Conference (USENIX ATC 24). USENIX Association, Santa Clara,
CA, 75-93. https://www.usenix.org/conference/atc24/presentation/qiu

John Ravi, Tri Nguyen, Huiyang Zhou, and Michela Becchi. 2021. PILOT: a
Runtime System to Manage Multi-tenant GPU Unified Memory Footprint. In 2021
IEEE 28th International Conference on High Performance Computing, Data, and
Analytics (HiPC). IEEE, 442-447.

Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos Kozyrakis.
2021. INFaaS: Automated Model-less Inference Serving. In 2021 USENIX An-
nual Technical Conference (USENIX ATC 21). USENIX Association, 397-411.
https://www.usenix.org/conference/atc21/presentation/romero

Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: a GPU cluster
engine for accelerating DNN-based video analysis. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (Huntsville, Ontario, Canada)
(SOSP °19). Association for Computing Machinery, New York, NY, USA, 322-337.
https://doi.org/10.1145/3341301.3359658

Sudipta Saha Shubha, Haiying Shen, and Anand Iyer. 2024. USHER: Holistic
Interference Avoidance for Resource Optimized ML Inference. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24). USENIX
Association, Santa Clara, CA, 947-964. https://www.usenix.org/conference/
osdi24/presentation/shubha

Shuaiwen Song, Chunyi Su, Barry Rountree, and Kirk W. Cameron. 2013. A
Simplified and Accurate Model of Power-Performance Efficiency on Emergent
GPU Architectures. In 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing. 673-686. https://doi.org/10.1109/IPDPS.2013.73

https://mlcommons.org/

ACM SIGENERGY Energy Informatics Review

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

Jovan Stojkovic, Chaojie Zhang, Inigo Goiri, Josep Torrellas, and Esha Choukse.
2025. DynamoLLM: Designing LLM Inference Clusters for Performance and
Energy Efficiency . In 2025 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE Computer Society, Los Alamitos, CA, USA,
1348-1362. https://doi.org/10.1109/HPCA61900.2025.00102

Foteini Strati, Xianzhe Ma, and Ana Klimovic. 2024. Orion: Interference-aware,
Fine-grained GPU Sharing for ML Applications. In Proceedings of the Nine-
teenth European Conference on Computer Systems (Athens, Greece) (EuroSys
’24). Association for Computing Machinery, New York, NY, USA, 1075-1092.
https://doi.org/10.1145/3627703.3629578

Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang. 2024. Pre-Warming is
Not Enough: Accelerating Serverless Inference With Opportunistic Pre-Loading.
In Proceedings of the 2024 ACM Symposium on Cloud Computing (Redmond, WA,
USA) (SoCC °24). Association for Computing Machinery, New York, NY, USA,
178-195. https://doi.org/10.1145/3698038.3698509

Cheng Tan, Zhichao Li, Jian Zhang, Yu Cao, Sikai Qi, Zherui Liu, Yibo Zhu, and
Chuanxiong Guo. 2021. Serving DNN models with multi-instance gpus: A case of
the reconfigurable machine scheduling problem. arXiv preprint arXiv:2109.11067
(2021).

Xinpeng Wei, Zhichao Li, and Cheng Tan. 2024. Optimizing GPU Sharing for
Container-Based DNN Serving with Multi-Instance GPUs. In Proceedings of the
17th ACM International Systems and Storage Conference (Virtual, Israel) (SYSTOR
"24). Association for Computing Machinery, New York, NY, USA, 68-82. https:
//doi.org/10.1145/3688351.3689156

Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. 2023. Transparent
GPU Sharing in Container Clouds for Deep Learning Workloads. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23). USENIX
Association, Boston, MA, 69-85. https://www.usenix.org/conference/nsdi23/
presentation/wu

Gene Wu, Joseph L. Greathouse, Alexander Lyashevsky, Nuwan Jayasena, and
Derek Chiou. 2015. GPGPU performance and power estimation using machine
learning. In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA). 564-576. https://doi.org/10.1109/HPCA.2015.7056063
Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. 2018. Gandiva: Introspective Cluster Sched-
uling for Deep Learning. In 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 595-610.
https://www.usenix.org/conference/osdi18/presentation/xiao

Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui
Feng, Wei Lin, and Yangqing Jia. 2020. { AntMan}: Dynamic scaling on {GPU}
clusters for deep learning. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 533-548.

Fuxun Yu, Shawn Bray, Di Wang, Longfei Shangguan, Xulong Tang, Chenchen Liu,
and Xiang Chen. 2021. Automated Runtime-Aware Scheduling for Multi-Tenant
DNN Inference on GPU. In 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). 1-9. https://doi.org/10.1109/ICCAD51958.2021.9643501
Junyeol Yu, Jongseok Kim, and Euiseong Seo. 2023. Know Your Enemy To
Save Cloud Energy: Energy-Performance Characterization of Machine Learning
Serving. In 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 842-854. https://doi.org/10.1109/HPCA56546.2023.10070943
Peifeng Yu and Mosharaf Chowdhury. 2020. Fine-Grained GPU Sharing Primitives
for Deep Learning Applications. In Proceedings of Machine Learning and Systems
2020 (MLSys 2020), Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne
Sze (Eds.). mlsys.org. https://proceedings.mlsys.org/book/294.pdf

Bowen Zhang, Shuxin Li, and Zhuozhao Li. 2024. MIGER: Integrating Multi-
Instance GPU and Multi-Process Service for Deep Learning Clusters. In Proceed-
ings of the 53rd International Conference on Parallel Processing (Gotland, Sweden)
(ICPP °24). Association for Computing Machinery, New York, NY, USA, 504-513.
https://doi.org/10.1145/3673038.3673089

Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica. 2023. SHEPHERD:
Serving DNNs in the Wild. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). USENIX Association, Boston, MA, 787-808.
https://www.usenix.org/conference/nsdi23/presentation/zhang-hong

Yijia Zhang, Qiang Wang, Zhe Lin, Pengxiang Xu, and Bingqiang Wang. 2024.
Improving GPU Energy Efficiency through an Application-transparent Frequency
Scaling Policy with Performance Assurance. In Proceedings of the Nineteenth
European Conference on Computer Systems (Athens, Greece) (EuroSys '24). As-
sociation for Computing Machinery, New York, NY, USA, 769-785. https:
//doi.org/10.1145/3627703.3629584

Zhihe Zhao, Neiwen Ling, Nan Guan, and Guoliang Xing. 2023. Aaron: Compile-
Time Kernel Adaptation for Multi-DNN Inference Acceleration on Edge GPU. In
Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems
(Boston, Massachusetts) (SenSys °22). Association for Computing Machinery, New
York, NY, USA, 802-803. https://doi.org/10.1145/3560905.3568050

Volume 5 Issue 2, July 2025

